Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources
نویسندگان
چکیده
Asynchronous transmission plays a prominent role at certain synapses but lacks the mechanistic insights of its synchronous counterpart. The current view posits that triggering of asynchronous release during repetitive stimulation involves expansion of the same calcium domains underlying synchronous transmission. In this study, live imaging and paired patch clamp recording at the zebrafish neuromuscular synapse reveal contributions by spatially distinct calcium sources. Synchronous release is tied to calcium entry into synaptic boutons via P/Q type calcium channels, whereas asynchronous release is boosted by a propagating intracellular calcium source initiated at off-synaptic locations in the axon and axonal branch points. This secondary calcium source fully accounts for the persistence following termination of the stimulus and sensitivity to slow calcium buffers reported for asynchronous release. The neuromuscular junction and CNS neurons share these features, raising the possibility that secondary calcium sources are common among synapses with prominent asynchronous release. DOI: http://dx.doi.org/10.7554/eLife.01206.001.
منابع مشابه
Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels
In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in...
متن کاملThe Same Synaptic Vesicles Originate Synchronous and Asynchronous Transmitter Release
Transmitter release and synaptic vesicle exo- and endocytosis during high-frequency stimulation (20 pulses/s) in the extracellular presence of different bivalent cations (Ca(2+), Sr2+ or Ba2+) were studied in frog cutaneous pectoris nerve-muscle preparations. It was shown in electrophysiological experiments that almost only synchronous transmitter release was registered in a Ca(2+)-containing s...
متن کاملSynaptotagmin-7 Is an Asynchronous Calcium Sensor for Synaptic Transmission in Neurons Expressing SNAP-23
Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution ...
متن کاملPrimary Afferent Activation of Thermosensitive TRPV1 Triggers Asynchronous Glutamate Release at Central Neurons
TRPV1 receptors feature prominently in nociception of spinal primary afferents but are also expressed in unmyelinated cranial visceral primary afferents linked to homeostatic regulation. Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS) to control the heart, lungs, and other vital organs. Here we identify a role for central TRPV1 in the activity-dependent facilitati...
متن کاملTwo spatially and temporally distinct sources of calcium contribute to vesicle release at the zebrafish neuromuscular junction
The neuromuscular junction is a classic model synapse that has proved to be a rich source of scientific discovery for many decades. Accessibility made this synapse a favorite for researchers in the early days of electrophysiology. Zebrafish neuromuscular junction retains this key feature, but is also an optimal system for modern day molecular biology, genetics, and optical techniques. Moreover,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013